A Process-Object Centered View of
Software Environment Architecture *

Leon Osterweil

CU-CS-332-86

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

e The authors gratefully acknowledge the support of the National Science Foundation grant #DCR-8745444 in cooperation with the
Defense Advanced Research Project Agency and the IBM Corporation.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1988 2. REPORT TYPE 00-03-1988 to 00-03-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Process-Object Centered View of Software Environment Architecture | .\ nUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 30
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A PROCESS-OBJECT CENTERED
VIEW OF SOFTWARE
ENVIRONMENT ARCHITECTURE

Leon Osterweil

CU-CS-332-86 March 1988

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, Colorado 80309

The authors gratefully acknowledge the support of the National Science Foundation grant
#DCR-8745444 in cooperation with the Defense Advanced Research Project Agency and
the IBM Corporation.

THIS REPORT WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY

THE UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES NOR

THE DEPARTMENT OF ENERGY, NOR ANY OF THEIR EMPLOYEES, NOR ANY

OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR EMPLOYEES, MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY
OR RESPONSIBLITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS

OF ANY TINFORMATION, APPARATUS, PRODUCT OR PROCESS DISCLOSED OR
REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY-OWNED RIGHTS.

1. Introduction.

The essential purpose of a software environment is to provide strong, complete
and readily accessible support for such key software processes as development
and maintenance. The basis of such support must be a diverse and powerful
set of functional capabilities supplied by what has previously been referred to as
"software tools". Increasingly, however, it is becoming clear that the most
challenging part of creating an effective software environment is not the crea-
tion of the software tools themselves, but rather the effective integration of
those tools and presentation of their capabilities to the user.

Further, it is becoming quite clear that a software environment is very much
like all other complex pieces of software in that it must be capable of growing,
adapting and changing to meet the ever-changing needs of its users. Indeed, as
software environments are a relatively new type of software product, it must be
expected that our understanding of the requirements for this type of product is
at a crude and primitive level. This makes it all the more important to be sure
that the architectures which we develop for these systems be as flexible as pos-
sible. It also suggests that it behooves us to seek general--and probably new--
paradigms and conceptual frameworks with which to organize and help under-
stand the problems for which software environments are purported to be the
solution.

In this paper we advance the notion that the key software processes of develop-
ment and maintenance can be effectively modelled as an unexpectedly complex
and intertwined collection of subprocesses supporting and communicating with
each other through the exchange of software products. We further suggest that
both these products and the processes themselves can profitably be viewed as
software objects.

This leads to an architectural view of software development and maintenance
which is elegantly uniform and encompassing, while also being quite amenable
to extension and modification across a broad spectrum. Thus we believe that it
a promising framework within which to study and understand the nature of
software processes. We also believe that it suggests an architecture for a family
of powerful, robust and flexible software environments which are good candi-
dates for active partnership in experimental research which should be successful
in leading to a fuller understanding and explication of software processes and
the environment mechanisms capable of effectively supporting them.

2. Background and Related Work.

We believe that the more successful software environment efforts in the past

have been most successful where they have attempted to convey to users the
sense that the essence of their work was the creation of information in the form
of software objects and products. In that such efforts have concealed the pres-
ence and actions of tools they have succeeded. In place of confronting users
with the need to understand and manage tools, they have required users to
understand and manage data objects and structures necessary to the creation
of software end-products. Certainly in the process of managing software objects
and products it has been necessary to manage their transformation as well.
Here the need for tools arises, but here the most successful environment efforts
have attempted to reduce the user view of the needed tools to the most
simplified minimum--arriving at the view that tools are best thought of as func-
tions or operators.

Some examples of environments which foster and support this view are
Toolpack /IST [Osterweil 83, ClemOst 86], Smalltalk [Goldberg 84| and Interlisp
[TeitMas 81]. In all cases the user of the environment is encouraged to think of
his or her job as being the creation or alteration of software objects through
functional transformations which either create new objects from scratch or
transform older objects. These environments are viewed as being predominantly
interactive, with user direction coming essentially one command at a time. In
this we believe that these older environments have missed an opportunity to be
more successful and to link up with another fruitful and active line of research.

We believe it is important to recognize that the user of a software environment
does not issue random commands one at a time to an environment, but rather
attempts to follow an orderly procedure for fashioning more highly developed
products out of collections of software piece-parts. If one were to capture the
stream of commands issued to a software environment such as Toolpack/IST or
Smalltalk, one would presumably have the equivalent of an execution history
trace taken through a procedure intended to create software product(s) in an
orderly way. At present such procedures are kept informally in the minds of
software practitioners. It is significant to observe, however, that increasingly
researchers are attempting to realize and formalize these procedures. The most
visible attack on this problem is work aimed at studying "The Software Pro-
cess" [SPW1, SPW2|. But other research efforts [JeffTPA 81| have also been
aimed at studying and formalizing such activities as software design.

Our hypothesis is that the best way of understanding how software is developed
and maintained is to view these activities as coordinated sets of processes,
rather than as a monolithic Process, and to think of these processes as being
definable and expressible in actual well-defined procedural, algorithmic code.
This view urges us strongly in the direction of viewing the processes used to
effect software development and maintenance as pieces of software themselves.
This suggests that software processes should be viewed as products which have

to be developed and maintained in just the way that more classical software
products also have to be developed and maintained.

This in turn suggests that there may be a great deal to be gained by extending
the scope of what can be considered to be a software object to include software
processes. Among the most important gains seems to be the possibility that the
tools and procedures applicable to development and maintenance of classical
software objects might also prove to be applicable and effective in developing
and maintaining themselves.

Tempering this sanguine view of software processes as objects is the realization
that software processes can also be activated and caused to operate on other
software objects. Thus software processes seem to have a dual nature--passive
objects upon which functional tools can operate and active operators capable of
application to passive objects. This observation does not invalidate our view of
environment architecture, but rather makes it clear that the architecture must
recognize this dual nature of software processes and must, in fact, be a positive
aid in effectively managing the duality.

The reward for doing this effectively is the widening of the scope of a software
environment to encompass the processes which drive the application of tools to
the development and management of software products. This widening should
be a significant help to the user in carrying out the necessarily complex software
processes. It should also enable precise visibility into the nature and function-
ing of software processes, thereby expediting the experimental evaluation and
rapid evolution of software processes and the tools and aids by which they can
most effectively be supported.

These ideas are more fully developed and more carefully presented in [Osterweil
86]. The interested reader is encouraged to explore the details and
ramifications of these ideas in that paper. For the present paper, however, we
proceed by indicating the implications that these ideas have for the architecture
of a software environment predicated upon the desirability of supporting this
view through the application of tools.

3. Process-Object Environment Architecture.

If we liken an environment’s tool capabilities to the primitive capabilities fur-
nished by a computer’s underlying hardware, then the essential job of the
environment can be likened to the job of a programming language, which must
help users utilize these capabilities effectively and also encourage thinking and
working at a higher, cleaner, and more concise level of abstraction. This anal-
ogy is well drawn and useful. Both environments and programming languages

enable the composition and configuration of functional capabilities, and must
store and tranfer information in order to do so. Both must exchange informa-
tion with external media and with users as well. More recently it has become
clear that both must also concern themselves with supporting the cooperative
activities of many users.

Further, just as programming languages have been built to support the creation
of processes for manipulating data (classical application programs), so we
believe that the goal of an environment should likewise be to support the crea-
tion of processes for manipulating software. HExamples of such processes are
software development and software maintenance. Some very high level and
very primitive examples of such processes can be found in [Osterweil 86].

Thus, a software environment must support the creation, assembly and manipu-
lation of software objects and it must provide facilities for defining the way in
which its tools operate upon these objects. In addition, however, the environ-
ment must also provide capabilities for orchestrating the application of these
capabilities as processes.

Viewing an environment as a device for fashioning and executing precise
deseriptions of key software processes helps us to establish some basic architec-
tural features. Consider, for example, software development--the most obvious
software process. Development effects the creation of a software product, which
should be viewed as a complex structure of such software objects as source text,
executables, testcases, design criteria and documentation.

Hence development is the process of creating and aggregating software objects
with tools. We believe that this and all other processes should be rigorously and
precisely specified. Following the programming language metaphor we are led
to consider the utility of typing. As shall be demonstrated, we have determined
that superior process rigor and precision can be advanced by considering all
software objects to be instances of types and all software tools to be operators
whose operands are these type instances.

One important implication of this view is that software development can take
place only after operand types have been carefully defined, tool functions have
been rigorously expressed, and the development procedure itself has previously
been considered, and defined. Clearly quite a bit of work must take place
before the development process can begin. This work, moreover, must itself be
precise and disciplined as its product is a precise and disciplined development
process. In fact, it seems clear to us that this work should itself be defined as a
process--namely a software process development process, or PDP.

Thus our belief that a software environment shares most of the goals and

methods of a modern programming language and our belief that software
processes can and should be expressed rigorously in algorithmic code have led us
to conclude that in order to assure that a software development process (DP for
short) produces highest quality products, the DP should first be thought of as
itself the product of a PDP, the process aimed at the creation of the DP and
the structures in terms of which it is defined. Shortly we shall see that this
notion is useful in helping to conceptualize, control and organize the diverse
activities supported by a software environment.

Consideration of the nature of software maintenance is also useful in this
regard. The goal of software maintenance is to alter a software product. So
far we have discussed two very different products--the DP and the more conven-
tional software products which the DP produces. Maintenance may be aimed at
altering either or both. Alteration of the convential software product is more
straightforward, and we shall refer to it as product maintenance. It can be
viewed as a simple case of a more difficult and significant type of maintenance,
which we shall refer to as process maintenance. Process maintenance entails
altering the DP, analyzing the software products which had been produced by
the original DP, and altering these software products to make them consistent
with the new DP.

An important example of process maintenance is the integration of a new tool
into an environment. The new tool is presumably to be integrated because it is
capable of creating objects of a new type or because it is more efficient in creat-
ing objects of existing types. Consequently, the development process description
must also be changed to indicate where and how the new tool is to be used.

This example is particularly important because of our belief that environments
must be extensible in order both to accomodate evolving tools and techniques,
and to support experimentation and evaluation which must drive and direct
such evolution. Thus software environments must be extensible, incorporating
effective and orderly procedures for the insertion of new tools and types. The
foregoing discussion indicates that procedures are not insignificant, suggesting
the desirability of carefully defining them and carrying them out by means of
still another type of process--namely a process maintenance process (PMP).

Thus we have introduced three separate but closely related types of processes
which must be supported by an environment--development processes (DP’s),
process development processes (PDP’s) and process maintenance processes
(PMP’s). In order to be sufficiently powerful and effective, a software environ-
ment must recognize the legitimacy and separate characteristics of all three,
must support the careful definition of all three, and must offer tool and pro-
cedural support for all three. Indeed, we believe that effective software mainte-
nance within a rigorous framework cannot be carried out without

acknowledging and supporting all three.

We observe in passing that these three processes are by no means the only
processes which a software environment must support. Some other processes,
and considerable further discussion of the three we have already mentioned can
be found in [Osterweil 86].

It is important not to leave the reader with a pessimistic view that software
development cannot begin until a bewilderingly complex web of processes has
been built from scratch. Instead, we must hasten to point out that it is likely
that these different types of processes may share significant amounts of sub-
structure and tool support and that, as all are objects, many might well be
expected to have been developed by alteration or adaptation of other, preexist-
ing processes.

3.1. Objects, Types, Tools and Processes.

We now proceed to more specific discussions of objects, types, tools and
processes--the key architectural components of a software environment. We
recall that an environment is best understood as a system for supporting the
rigorous definition and subsequent interpretive execution of software process
descriptions, where these descriptions are expressed by means of a language
which supports the rigorous definition of objects, types and operators. Rela-
tively little will be said about the flow of control facilities of the language.
Preliminary work indicates, however, that the language will have to contain
extensive flow of control and proceduring mechanisms and will also have to sup-
port structures for concurrency and task synchronization. This point is
addressed in some detail in [Osterweil 86].

3.2. Object Management.

We have argued that tools should be viewed as functional tranformers acting
upon objects in much the same way that machine language instructions act
upon their operands. In both cases control and discipline result from allowing
operands to be accessed only by a small selected set of accessing primitives and
basic manipulative functions (which can, of course, be composed to produce
higher level functionality).

This is how hardware systems implement primitive types, such as integer and
real. Modern programming languages provide the user with additional types
which are not implemented in hardware, but are offered to the user in a simi-
larly restricted and disciplined fashion. Some languages also offer the user facil-
ities for creating new types--abstract data types--in which use and access are

restricted and disciplined in the same way.

Data types in a process description language will be defined in this way also.
Instances of a type will only be created, accessed and manipulated through a
small set of previously defined functional primitives. Tools will be highly modu-
lar, generally being composed out of a number of smaller tool fragments. These
tool fragments will all access a needed object only through an accessing primi-
tive for the type of which the object is an instance. This will enable tool frag-
ments to share, manipulate, and elaborate upon objects created by other tool
fragments while also incorporating the sort of discipline in object access that
will insure the integrity, modifiablility and extensibility of the environment.

Unfortunately current computer systems do not assure that persistent objects
will always be accessed only in such a disciplined way. Such discipline can be
assured within any single execution of a program written in a language such as
Ada (TM). After termination of the execution of that program, however, per-
sistent objects are generally made accessible and alterable with ordinary utility
tools. Data base management systems often enforce such disciplined access con-
trol, but usually only for a very limited class of types (e.g., integers, reals, and
character strings) and structures (e.g., relations). Moreover, they present a view
of storage as one monolithic unit (e.g., the data base) with one set of general
purpose operations.

Consequently, we have concluded that a software environment which imple-
ments the architectural view we are suggesting will have to incorporate its own
object management subsystem for providing the sort of disciplined object access
required to assure integrity, flexibility and extensibility.

3.2.1. Objects.

The objects which seem to require management in a software environment
range widely in size and character. Small objects, such as tokens and graph
edges, require management, but so do large objects such as entire programs or
diagnostic output objects. Objects may be as diverse as text, object code, test
data, symbol tables or bitmap display frames. One organizing premise which
seems most helpful is to require that each object be considered to be an
instance of a type. This by itself does not seem to provide enough structure
and organization to support effective object management, however.

In addition, it seems important to recognize that each object is also generally
related to a number of other objects in the store by a potentially large variety
of types of relations. These interobject relations should be stored explicitly as
objects in order to be of maximum utility. Some examples of types of

interobject relations are: versioning, consistency, derivation and hierarchy.

Hierarchy relations enable users to, for example, model the inherent structure of
systems being developed or maintained. Hierarchical structures should be
implemented in such a way as to allow objects to be grouped, and to allow
such groups to be objects which can then be included in other groups. It should
be possible for these groups to overlap, making it possible for a user to include
an object in several hierarchical structures. This inclusion should be logical
rather than physical, however, to eliminate duplication of storage or difficulties
in properly reflecting updates of shared objects. Our experience with a similar
capability in the Toolpack project [Osterweil 83, ClemOst 86 indicates that
this capability encourages users to think and operate at a higher level of
abstraction.

The types, of which individual objects are instances, should also form a hierar-
chy. Types should be structured by a subtype relation similar to that in
Smalltalk 80, in which subtypes inherit accessing primitives from their super-
types. Thus, for example, the type "flowgraph" might well have "set/use
annotated flowgraph" as a subtype, in which case "set/use annotated
flowgraph' objects will be manipulable by all of the accessing primitives appli-
cable to objects of type "flowgraph.” This should simplify the implementation,
exploitation and conceptualization of both types and type instances (objects) in
environments of the sort we are suggesting here.

It is worthwhile to point out that the objects of given type may also be organ-
ized hierarchically, and that their hierarchy may not bear any relation to the
hierarchical structure which includes their types.

It is particularly important that the object store incorporate explicit consistency
relations among its objects as consistency is the property whose establishment is
the goal of testing and evaluation. Testing and evaluation seek to study the
presence or absence of errors, and errors are essentially inconsistencies among
software objects. Most often an error is an inconsistency between a
specification of intent and a solution specification (eg. see [Osterweil 82,
Osterweil 81]). Thus testing and evaluation tools can appropriately be viewed
as operators aimed at either establishing or disproving consistency relations. It
seems most logical and effective for these relations to be explicit.

The value of explicitly storing the derivation relation among objects will be
addressed shortly.

[t is important to point out that types and the type hierarchy itself should all
be treated as objects. This observation is useful in further explaining our ear-
lier comments on maintenance. As observed earlier, it is vital that an

environment support the alteration or addition of new types to a DP. As types
are to be defined as clusters of accessing primitives and are organized into a
hierarchy, type alteration or addition entails potentially complex transforma-
tions to these clusters and hierarchy. That is why we believe that such altera-
tion or addition is best thought of and carried out as a well-defined algorithmic
procedure (a PMP). Certainly a PMP must be defined in terms of operations
on objects, types and type structures are the objects.

This observation makes it clear that an environment cannot be viewed as a sin-
gle process, but rather as an interconnected collection of processes. An environ-
ment must support a PDP by enabling the definition and manipulation of types
and type structures as objects. These objects can then be frozen and per-
petuated for use by the DP. Within a DP, however, it is generally desirable
that these types not be considered objects, but rather collections of executable
code procedures. Within a DP the integrity of a type definition can be main-
tained by stripping away any primitives capable of accessing the type definition
primitives. This would imply that the type (ie. its collection of accessing primi-
tives) could only be changed by a PMP within which the type is an object by
virtue of the inclusion of primitives capable of accessing the type’s accessing
- primitives. Such an approach offers the advantages of 1)control over the how a
type is defined, 2) discipline in how type instances must be accessed and
altered, but 3) a controlled and careful way in which type definitions can be
altered.

3.2.2. Persistence.

An environment must also support persistence--the ability to save objects
beyond the end of execution of any of the tool or processes that manipulate it.
Nevertheless, the environment must assure that all accesses to that object are
only through the object’s accessing functions. Thus, an object should be
allowed to persist only if its accessing primitives persist as well. Thus an
instance of an object can not be separated from the defined operations on that
object.

Returning to our previous discussion of types, we note that a type object does
not persist from a PDP through to a DP, because it is no longer an object dur-
ing the DP. The type object does persist from a defining PDP through to an
altering PMP, because during the PMP it is possible to change the type
definition. This necessitates the persistence of all of the type object’s accessing
primitives and the persistence of the type object as an object.

For the most part, tools should be unaware of the persistence of the objects
that they manipulate. Thus tools should access objects without knowing how or

when they were created. Objects produced by intermediate tool fragments, in
response to user requests should be saved by the environment’s object manager
according to some algorithm for evaluating potential for future reuse. These
persistent intermediate objects should then be available for reuse in responding
to a subsequent user request, thereby expediting the environment’s response.
This notion was advanced and implemented in the Toolpack project through
the Odin integration system [Clemm 86, ClemOst 86).

3.3. Tool Management.

Tool management capabilities complement object management capabilities.
This is appropriate and logical because tools are viewed as functional tranduc-
ers defined on objects, and objects are instances of types defined in terms of
functional primitives. Thus in this section we stress the relationships among
tools and objects as a primary focal point of our discussion.

3.3.1. Tool Structure.

An environment must be a vehicle for providing extensive and growing tool
capabilities. These capabilities should be furnished primarily by collections of
small tools--tool fragments-- rather than by a few, large, monolithic tools. For
example, the task of prettyprinting should be carried out by a collection of tool
fragments including a lexical analyzer, a parser, and a formatter-- operating in
concert. More sophisticated prettyprinting functions require the invocation of a
static semantic analyzer. An instrumented test execution requires upwards of a
dozen tool fragments, operating at times in sequence and at times in parallel.

One of the main advantages of composing larger tools out of smaller fragments
is that, if the tool fragments are well chosen, they will prove to be usable as
components of a variety of larger tools, thereby enabling the creation of these
larger tools at lower cost. For example, both the prettyprinter and dynamic
instrumentation tool just mentioned require lexical analysis and parsing in order
to begin their work. Both tools incorporate these fragments, thereby saving the
creators of these tools the effort of having to recreate these functional capabili-
ties.

The tool fragment architecture also leads to the materialization of intermediate
objects which, if made persistent, can, as noted above, lead to efficiency
through reuse. We now see that an environment can support both reuse of tool
fragments in the creation of tools during a PDP and reuse of intermediate
software objects during a corresponding DP.

Another benefit of the tool fragment architecture is that it encourages toolmak-
ers to think in terms of good modular decomposition for their tools and good
organization for the objects which their tools use. Thus, we believe that the
writer of a prettyprinter, for example, will create a better tool because
correspondingly more time can be spent on the problem of prettyprinting, and
no time need be wasted on creating a parser. In addition, because the writer of
the prettyprinter accesses the output of a proven parser, the prettyprinter is
likely to be better for its reliance on a more robust and thorough parser than
would likely have been created from scratch. In short, we contend that the
prettyprinter will be a better tool because it will be based conceptually upon
such data and software constructs as lexical tokens, parse trees, and symbol
tables and will be based physically upon major bodies of robust proven code.

3.3.2. Tool Structure and Relationships.

In previous sections we have described numerous benefits of treating tools as
transformers of instances of types. We noted that this discipline makes it possi-
ble to prevent the application of tools to inappropriate objects; that it supports
the definition of tool invocation sequences which rigorously stipulate potentially
reusable intermediate products of such sequences. We shall also see shortly that
it also contributes to version control, demand-driven (lazy) rederivation of
modified objects, and a useful form of inferencing that can be exploited by plan-
ning tools.

In this section we see that it is also the basis for definition of a structure which
relates tools-- the Type Dependency Graph (TDG). A TDG is a structure which
contains as its nodes all of the types known to the environment’s object
manager, and has as its edges annotated designations of the various tools.
Thus, a TDG summarizes the relationships between tools and objects.
Specifically, a tool may only operate on objects that are instances of the types
found at the origin of an edge in the TDG bearing that tool’s designation. Simi-
larly, the only tools that can produce objects of a given type are those whose
designation appears on an edge that terminates in a TDG node corresponding
to that type.

A TDG induces derivation relationships on the actual objects in the environ-
ment object store. This type of relation among objects was alluded to earlier.
Objects, being instances of the types found in a TDG, are related by depen-
dency relationships corresponding to those defined by (some subset of) the TDG
edges. These relationships among objects then may be viewed as an Object
Dependency Graph (ODG), created and maintained by interaction of the tool
and object managers. In particular, newly created objects are said to depend for
their creation upon the existence of their predecessors, in which case the object

manager records this dependency relation by logically making the new objects
descendants of their predecessors in the Object Dependency Graph (ODG).

Each object can be viewed as the root of a subtree of the ODG which we refer
to as the object’s own Dependency Tree. To be most useful and effective, this
subtree should be doubly linked--upwards and downwards. The uplinks of the
tree can be followed in order to determine all of the ancestor objects which were
used, either directly or indirectly, to create the object; the downlinks of the
Dependency Tree indicate which objects depend upon the object for their crea-
tion.

Dependency trees have already been exploited in certain version control systems
such as RCS [Tichy 83]. In such systems, all descendants are created by the
action of a single tool, generally a text editor. It is assumed that there is a sin-
gle root version, and that this version has a tree of descendants, each of which
can be built by successive applications of the tool. One value of this scheme
that it helps make clear the potential range of the impact of changes to any one
version.

We are suggesting the use of a similar dependency structure within the object
store, but this structure is developed, not by successive applications of a single
tool, but by applications of any legal sequence of tools. Thus, a user may use
the environment to create a Dependency Tree for versions of source code as in
RCS, or may create a complex tree in which objects of various types, the results
of different sequences of tool applications, are all stored in a single Dependency
Tree.

Such an environment must also incorporate algorithms for determining when
objects at lower levels of a Dependency Tree have become obsolete because of
alterations or deletions of objects higher up in the tree. Whenever an object at
a higher level of the tree is changed, the object manager must recognize that all
descendants of that object are to be viewed with suspicion. The environment
need not take immediate steps to recreate these objects, however. Instead, it
can employ a demand-driven reconstruction strategy such as that implemented
in Odin [Clemm 86, ClemOst 86|, under which new versions of an object are not
created until they have been requested either directly or indirectly by the user.
At that time, all the objects reachable by traversing uplinks from the object in
the Dependency Tree are examined. If the object was, in fact, created from
ancestor objects which have subsequently been altered, the object manager
must begin the process of recomputing it from the current version of the ances-
tor objects. Objects between the altered ancestors and the desired object must
be reconstructed. They must also be compared to their previous versions. If, at
any point, the reconstructed objects match their previous versions, the recon-
struction process can stop and the equivalence of old and new versions of

objects lower in the tree relied upon.

3.3.3. Planning Tool Activations.

In general we have learned that the functional capabilities which users require
and expect from tools tend to become so complex that it is difficult to determine
in advance the order in which tool fragments will have to be invoked in order to
derive a requested object from existing objects. For example, a data flow
analyzer (eg. [FosdOst 76]) must analyze the compilation units of a program in
two passes, where the order of analysis during the second pass is computed dur-
ing the first pass. In this case it is impossible to predetermine the exact order
of invocation of tool fragments on the separate software objects. An environ-
ment must support the synthesis of such tools. One way in which this can be
done is by means of a planning tool fragment whose job is to dynamically create
tool invocation sequences that are tailored and adjusted in accordance with the
current state of the object store and preprogrammed conditions. Planner tools
have been used in Odin to create tool invocation sequences in which tools are
scheduled for future invocation and in which software objects are taken and
produced in unexpected or changed orders. In addition, planners have been
used to schedule the invocation of other planners at projected future critical
points.

Finally it is important to point out that an environment must support the
notion of active as well as passive tools. Active tools commence execution
without direct invocation by users. They carry out their activities by acccessing
objects according to plans designed in advance, probably by software engineers
during the PDP. These active tools must be invokable by such control mechan-
isms as timers or daemons, whose job is to detect relevant changes in the object
store.

This capability seems to be a particularly useful one to a PMP. Specifically,
we expect that a maintenance process would have to incorporate a task consist-
ing of or containing an active tool whose job would be to periodically, and on
its own initiative, recompute certain prespecified consistency relations to see if
changes had altered the value of the relations from true to false. If so, then
the need for changes to other objects is indicated.

3.3.4. Tools as Objects.

In the environment architecture which we are proposing here tools and tool
fragments are objects in precisely the same sense in which types are objects.
Similarly, the Type Dependency Graph (TDG) is an object in the same sense in

which a type structure is an object. Tools, tool fragments and TDG’s are
objects during a PDP, but are not objects during a DP. Thus, tools, tool frag-
ments, and the TDG are key components and agents of any DP, but they have
no accessing primitives associated with them and cannot be altered by or during
a DP. On the other hand all are objects during a PDP and can therefore be
altered. Of course, as with alterations to types, such alterations need to be
communicated to, and their effects assimilated by, affected DP’s. This is one of
the jobs of a PMP.

The delineation of these three processes and identification of the objects upon
which they operate has served to sharpen our appreciation of the functional
roles of the various users of a software environment. For example, the internal
composition of tools should be of limited interest to those using the tools as part
of a DP, but must necessarily be a primary concern of tool developers as part of
a PDP Thus tool developers are expected to develop and alter tools as part of a
PDP. As part of that process they should be able to use tool and object
managers to access tool specification objects, current tool fragment objects, and
development object types to assist them in the creation (or modification) of new
tool objects, and the alteration of TDG’s to accomodate such additions and
alterations.

Once tools or types have been changed, a PMP must evaluate the changes made
and propagate their effects carefully and efficiently. For example, if an existing
object type is modified in such a way that there are no changes in the set of
accessing primitives that define the type, then a PMP should not need to make
any consequent changes to a DP using that type and incorporating instances of
that type.

On the other hand, if any of the accessing primitives defining that type are
changed, then a new type is thereby created. This necessarily affects all tool
fragments which either created or used objects of that type, and all DP’s using
the type and such tool fragments. Changes to tools, TDG’s and impacted
processes must be determined and made as part of a PMP. Clearly careful
attention must be paid to this process and to the creation of new tools which
might be of particular value in supporting the process. In particular, it may be
desirable to create a tool that can transform objects of the old type to objects
of the new, and incorporate a corresponding edge in the TDG.

4. Future Directions of This Research.

We are convinced that the foregoing ideas can form the core of the architecture
of a very powerful, flexible and extensible software environment. Further we

believe that these ideas bring a great deal of unity and focus to the efforts of
software process researchers, software environment researchers and architects,
and programming language researchers. We have already embarked upon a
broad and vigorous program of research aimed at exploring the ramifications of
these ideas, sharpening and refining them, and experimentally evaluating them.
In this section we briefly present some of the key issues that we see as the
prominent ones in this research.

We suggest that diverse areas of software engineering research can be
significantly advanced by establishing a language in which software engineering
processes can be effectively expressed, by expressing various key processes in
that language, by creating compilation and runtime support systems for that
language, and by then attempting to use these systems to provide effective
automated support for the execution of these key software processes. Finally,
we suggest that all of this is best pursued by creating and experimenting with
an actual software environment predicated upon these ideas. Work on such a
prototype environment is currently being begun. This environment is called
Arcadia [Arcadia 86].

A central focus to this research is to to devise and study various algorithms for
expressing software engineering processes. We have already begun to create
algorithms for software development, software product maintenance, software
process maintenance, software product evaluation and software process evalua-
tion. As we have proceeded with the iterative refinement of these algorithms
we have begun to learn much about the nature of these processes, their rela-
tions to each other and to other processes such as reuse. Thus we expect that
continuation of this activity will lead to more important insights, and, eventu-
ally to sound process algorithms.

Our intention is to arrive at acceptable algorithms for describing development,
maintenance, evaluation and testing, and reuse. Having devised these algo-
rithms we propose to solidify our notions of superior language paradigms and
constructs for expressing them, and to solidify our notions of tool and environ-
ment architecture by examining the runtime structures and procedures needed
to effectively support execution of these algorithms.

4.1. Design of the Software Engineering Language Itself.

While exploratory development of process algorithms seems more central to the
pursuit of this research, development of a language system in which such

algorithms might be encoded also strikes us as important. As this area is some-
what better established, it seems, moreover, easier to categorize and organize
the way in which this research might be pursued.

In this section we attempt to indicate how an orderly attack on the problem of
creating a software engineering language might be organized.

4.1.1. The Language Paradigm.

The first task in defining this language will be to decide which linguistic para-
digm is most suitable. Our early investigations have built upon a bias towards
the use of an algorithmic language. This bias is at least largely based upon our
belief that software engineers will be drawn from the ranks of software practi-
tioners, and are most likely to be trained in programming in algorithmic,
sequential (possibly parallel) programming languages. Thus it is most attrac-
tive to suggest that, as software engineers, they program in a language with a
similar, and therefore comfortable, philosophy and paradigm. Making such an
important decision based solely on the grounds of tradition and convenience is
imprudent, however. Thus we have attempted to seek deeper justification for
this prediliction.

Our second basis for believing that a parallel, sequential algorithmic language is
best suited for programming software engineering is that software development
and maintenance are to be carried out by human practitioners, and humans
seem to us to be psychologically most self assured in thinking about their plans
and actions in terms of discrete, sequential steps and activities. Thus, a pro-
gramming language which will be use to describe, regulate and control their
activities in building software should seem most natural and comfortable if it
expresses their activities in similarly discrete and sequential steps.

Although our current predisposition is towards more traditional and comfort-
able algorithmic languages, we recognize the need to consider non-traditional
languages as well. We have, accordingly, pondered a variety of non-algorithmic
language paradigms. One interesting paradigm, for example, is that of a pro-
cess control language. As previously described, software development and
maintenance might well be viewed as a real-time processes involving the syn-
chronization of the activities of people and mechanized aids. Borrowing from
the idiom of process control software might thus be highly effective. From this
perspective, activities such as code and design creation would correspond to
synthesis (input) processes, and consistency checking activities would correspond
to analysis processes. The software development program would then be a
software system which incorporated a variety of such synthesis and analysis
processes as asynchronous tasks, which, nevertheless communicated broadly

among themselves, and paused at programmed intervals and events to syn-
chronize and evaluate progress and consistency. Thus, control process software
should be examined carefully as a model which might be worth emulating.
Simulation languages capable of supporting the programming of such processes
(eg. Simula and Simscript) are also worth examining.

Other potentially useful paradigms include object-oriented languages, functional
or applicative languages and database language approaches. The appeal of an
object oriented language approach is that it would clearly support and
encourage the view of a software product as a collection of objects of diverse
types. It seems clear that the designer of a language for software engineering
should borrow heavily from object oriented language mechanisms for defining
object types and operations on such types. In fact this strategy has been
adopted by some KBSE researchers. Their work centers on the creation of a
large and intricate knowledge structure which captures and correctly interre-
lates all information pertaining to the software being developed or maintained,
and using that knowledge effectively in support of these processes. This is
important to us, because, as observed earlier, our SPS can very reasonably be
viewed as a knowledge structure, although it seems that the SPS and SP’s we
envision would probably be structures of much larger objects than are
envisioned as the constituents of KBSE's.

We are still not persuaded that we should adopt an object-oriented language
paradigm for our work, however, because of our relatively greater emphasis on
the algorithms needed to develop and maintain the knowledge and information
structures which we agree are central. We remain convinced that software
engineers and practitioners do maintain a strongly algorithmic view of what
they do, but that they have been thwarted in effectively exploiting it due to the
lack of an adequate expressive device. Object oriented languages do not seem
to us to sufficiently encourage the attention to algorithmic expression which
seems urgently needed at this stage of exploration of the algorithmic nature of
software engineering processes.

The appeal of a functional language is that it could support and encourage the
view that software processes (eg. development and maintenance) are essentially
the evaluation of large functions which are computed by the evaluation of a
complex substructure of smaller functions. This view is appealing in that the
software product which is the focus of these software processes is a complex
composite of smaller objects and interrelations. Thus, it seems quite useful to
describe processes on this product as the processes of creating its subcom-
ponents and evaluating needed interrelations.

There appear to be significant problems in adopting a functional programming
language approach, however. One is the need to at least partially linearize the

order of evaluation of functions and subfunctions. The problem here is that
some of the functions are to be carried out by humans who have difficulty car-
rying out unbounded parallel activities, and because the other functions must
be carried out on a bounded number of computing devices. Functional pro-
gramming systems assume the responsibility for such linearization, and take this
process out of the hands of the software engineer. This strikes us as being
awkward, at least for the present, when efficient compilation of efficient object
code for large and complex functional programs is very much a research topic.
Further, we continue to believe that some aspects of at least some software
development processes are more straightforwardly describable in terms of
sequential algorithmic steps rather than composition and nesting of functions.
Testing and consistency determination would seem to be in this category.
Thus, perhaps it is most reasonable to design the software engineering language
in such a way as to combine both procedural and functional programming capa-
bilities in such a way as to exploit the strengths of each in supporting software
engineering process description and control.

Finally, it seems certain that at least some of the notational and descriptive
devices used in database languages are useful as means for describing the
software product in a software engineering language. Thus we would expect to
borrow at least some of the descriptive mechanisms of such languages. We are
not as sanguine about the prospect of exploiting such languages as vehicles for
expressing software processes. We are particularly skeptical about how well
such languages and associated support systems would be able to support
software process maintenance. Earlier we observed that this sort of mainte-
nance entails alteration of the software product structure (the database
schema) while retaining and reassimilating most, if not all, of its contents. We
believe that extensible algorithmic language compilation systems currently pro-
vide the most useful paradigms for how to approach this problem.

Whatever the language paradigms used or merged to form the basis for the
software engineering language, there will have to be important further research
in establishing an effective semantic base within that language for support of
software activities. Thus another important aspect of this research will be the
determination of the built-in primitive data types and operators which the
language should provide, as well as the appropriate linguistic and conceptual
treatment of the relations which bind software objects together to form
software products.

4.1.2. A Compilation System for the Software Engineering Language.

As a primary reason for creating a software engineering language is to use it to
coordinate the work of software tools and their integration into a cogent

software environment, a prerequisite for such a language is that it be sup-
ported by an effective compiler for the language. This compiler will have to
accept specifications of such objects as types, TDG’s, and ODG’s and transform
them into object stores which will then be able to organize and structure
software objects as they are created. The compiler will also have to accept
development and maintenance process definitions and transform them into pro-
cedures which coordinate the work of human software workers with each other
and with the activities of software tools which implement various automatically
supported software operations.

Compilation issues can be divided broadly into three types--syntactic issues,
semantic issues and code generation issues. The last two types of issues seem
to be the most interesting.

4.1.2.1. Semantic Issues.

It is difficult to guess at which issues will pose the most difficulty in carrying out
semantic analysis of the software engineering language, especially in view of the
fact that not even the language paradigm has been selected. On the other
hand, it does seem that a powerful and extensible type structure is essential,
and this indicates that the semantic phase will have to be capable of potentially
sophisticated type checking. In addition, the need for supporting extensions and
alterations to the type structure of the language, while facilitating the large-
scale retention of objects created under the previous type schema, indicate the
need for a compilation system in which the type structure can be modified as an
object and used to create a new semantic phase for the compiler. In addition,
the compilation system must be capable of analyzing the differences between
the old and new type structures to enable maximal reuse and retention of
objects.

This last observation suggests a more precise interpretation of our earlier
suggestion that the software environment which we are proposing might be use-
ful in maintaining itself. We suggest that it is useful to consider the compiler
for the software engineering language must be considered to be an object. Any
single executable instance of the software engineering language compiler should
be considered to be an operator in a PDP. The source text of the compiler,
however, should be considered to be an object in a PMP, thereby enabling the
PMP to alter the semantics of the language. Thus the semantics-alteration pro-
cess we have described is a specific type of PMP.

4.1.2.2. Software Engineering Language Optimization Issues.

The task of the optimization phase of software engineering language compila-
tion systems is to emit sequences of instructions to carry out and synchronize
either human operations or computer based activities in such a way as to effect
the algorithmic processes described by the coder. Language semantic definitions
should assure that there is no doubt about how language operations are to be
interpreted in terms of manual processes and mechanized tools. Further, con-
trol low and synchronization operations will also require semantic definition in
order to enable emission of effective object code.

Generation of efficient code is a more interesting problem. Two efficiency
issues suggest themselves--one is the efficient storage of software objects and the
second is effective reuse of intermediate software objects. The problem of
achieving efficient storage of software objects is an important one, which seems
to fall more in the province of runtime support systems, and will be discussed
shortly. The problem of achieving effective reuse of intermediate objects is a
central issue in compilation and also affects the philosophy of tool implementa-
tion. Reuse of intermediate objects is only possible if the operations specified
by the user can be seen as being composed of lower level operations which
create such intermediate objects. Thus, if all of the operations in the software
engineering language are implemented as monoliths, there would seem to be
correspondingly little opportunity for reuse of intermediate objects. On the
other hand, if operations are generally implemented as concatenations or struc-
tures of lower level operators, which produce intermediate software objects,
these then become ideal candidates for reuse in subsequent computations.

Thus, the desirability of optimizing the object code generated by the software
engineering language compiler provides strong impetus for the implementation
of functional tools as composites of smaller, lower level tools (called tool frag-
ments in [Osterweil 83]). The strategy governing the way in which intermediate
objects are selected for storage for potential reuse was a research issue in the
context of [Osterweil 83|. Language statements were processed essentially
interactively and there were no alternatives to statistical approaches to guide
the strategy for saving intermediate objects. In this proposal, with our sugges-
tion that software development and maintenance processes be captured in com-
pilable code, it becomes clear that optimization algorithms and strategies much
like those used in classical languages can and should be applied.

4.1.3. Runtime Support for the Software Engineering Language Processor.

It is clear that the software engineering language will require powerful runtime
support subsystems in order to be the basis for effective execution of software

engineering processes. Two key areas of support immediately suggest them-
selves for early consideration-- object management and input /output.

The need for a powerful object manager has been amply indicated by earlier
sections of this paper. One of the central concepts in the approach we are sug-
gesting here is that software development be thought of in terms of the need for
creating, organizing and managing software objects. Clearly it is imperative to
have effective ways in which to store them. The problems in doing so are badly
compounded by our contention that objects are tightly interconnected to each
other by such types of relations as hierarchy, derivation, and consistency.
Clearly such simple organizational strategies as tree structures are woefully
inadequate. We believe that relational database approaches have serious draw-
backs as well. Some of these have been indicated earlier, and center on the
dynamism of the structure of the object store.

We view the Odin system [ClemOst 86 as a prototype object management
capability which incorporates a number of desirable features. From the per-
spective of this paper, we now understand that Odin actually incorporates some
features of a software engineering language subset, a semantic analyzer
modification and maintenance system subset, and an object manager. It seems
clear that whatever object managment system is incorporated into the proposed
software engineering language, it will have to have strong ties to the semantic
analysis phase of the language compiler.

Input /Joutput capabilities for the language are also quite interesting to ponder.
Here we are inclined to view all processes which are carried out by humans as
being input processes, and therefore in need of language assistance. Such assis-
tance would have to range from simple text [/O support, through interactive
editor support, to support for interaction with graphical and pictorial images.
It seems essential that all of these interactions be implemented and supported
in terms of basic language I/O primitives to assure a reasonably uniform user
view of the software processing capabilities offered. Thus, whether the user
were creating source code, design elements, test data sets or functional
specifications, there would be a strong sense of uniformity of interaction with
the software engineering language’s features.

Output would have to offer a similarly uniform feel. The purpose of output
capabilities would be to enable the user to see objects and relations in the
emerging software product. Thus, we expect that it will be important for the
user to be able to view a variety of objects, perhaps from a variety of perspec-
tives, and to interact with those objects. This suggests that the I/O package
will have to incorporate such capabilities as windowing, and menus. The use of
color might well also prove to be of value.

Finally, it should be noted that the software engineer is also likely to need to
view the process-objects which are being created and to get some insight into
the processes which have been constructed. This interaction is different from
the interaction needed by software practitioners. It corresponds more to the
needs of a debugger of a program than to the needs of a user of that program.
Thus, it is expected that the runtime system will also have to incorporate tools
and capabilities for enabling the software engineer to study the structure and
contents of the software process-object itself, in addition to the structure and
contents of its individual component objects and relations. Here too, we are
struck by the fact that these needs do not differ signifcantly from the needs of
the software practitioners. This again suggests that the software engineering
language may be adequate for the development and maintenance of programs
for the development and maintenance of software process-objects.

4.2, The Arcadia Protype Environment Project.

As indicated above, many of these ideas are to be experimentally evaluated
through a collaborative effort to build a protoype environment implementing
many of these ideas. This prototype environment is to be called Arcadia. The
Arcadia project involves researchers from the University of California at Irvine,
the University of Massachusetts at Amherst, the University of Colorado at
Boulder, TRW, Inc., Aerospace Corporation, and Incremental Systems Corp.
More details of the Arcadia approach and directions can be found in [Arcadia
86].

5. Acknowledgments.

The ideas described here have been developed over a period of a few years. The
author has profited considerably from many useful conversations with a number
of colleagues. Numerous conversations with John Buxton, Dick Taylor, Bob
Balzer, Lori Clarke and Geoff Clemm have been particularly useful in shaping
these ideas.

In addition, the author wishes to express his gratitude to the National Science
Foundation, and the US Department of Energy for their support of this work
through grants numbered, DCR-8403341 and DE-FG02-84ER 13283 respectively.

6. REFERENCES.

[Arcadia 86| R.Taylor, et.al., "Arcadia: A Software Development
Environment Research Project,” Univ. of Calif.,
Irvine, Dept. of Info. and Comp. Sci, Tech. Rpt.,
April 1986.

[Clemm 86 G.M. Clemm, "The Odin System: An Object Manager for
Extensible Software Environments,"
Univ. of Colo. Dept. of Comp. Sci. Ph.D. Thesis
Boulder, CO (1986).

[ClemmOst 86] G.M. Clemm and L.J. Osterweil, "The Odin Environment
Integration Mechanism," Univ. of Colo. Dept. of
Comp. Sci. Tech. Rpt. #CU-CS-323-86 (May 1986).

[FosdOst 76] L.D. Fosdick and L.J. Osterweil, "Data Flow Analysis
in Software Reliability,” ACM Computing Surveys,
8 pp. 305-330 (Sept. 1976).

[Goldberg 84] A. Goldberg, "Smalltalk-80: The Interactive
Programming Environment," Addison-Wesley, Reading,
Mass, 1984.

[JeffTPA 81] R.Jeffries, A.Turner, P.Polson, M.Atwood, "The
Processes Involved in Designing Software," in
Cognitive Skills and Their Acquisition,"
(Anderson, ed.) Lawrence Erlbaum, Hillsdale, NJ, 1981.

[Osterweil 81] L. J. Osterweil, "Using Data Flow Tools in Software
Engineering," in Program Flow Analysis: Theory and
Application (Muchnick and Jones, eds.) Prentice-Hall
Englewood Cliffs, N.J., 1981.

[Osterweil 82] L.J. Osterweil, "A Strategy for Integrating Program
Program Testing and Analysis," in Program Testing,
(Chandrasekaran and Radicchi, eds.) North Holland,
pp. 187-229, (1982).

Osterweil 83] L.J. Osterweil, "Toolpack--An Experimental
Software Development Environment Research
Project,” IEEE Trans. on Software Eng., SE-9,

[Osterweil 86|

[SPW1 84]

[SPW2 85|

[TeitMas 81]

[Tichy 83]

pp. 673-685 (November 1983).

L.J. Osterweil, "Software Process Interpretation
and Software Environments,” Univ. of Colo. Dept.
of Comp. Sci. Tech Rpt. #CU-CS-324 (May 1986).

Proceedings of Software Process Workshop, Runnymede,
England, February 1984.

Proceedings of Second Software Process Workshop,
Coto de Caza, CA, March 1985.

W.Teitelman and L.Masinter, "The Interlisp Programming
Environment," Computer, 14 pp. 25-33 (April 1981).

W. Tichy, "Design, implementation and evaluation of a
revision control system,” Proc. 6th Int. Conf. on
Software Engineering, Tokyo, (Sept. 1982) pp.58-67.

